Installing Software

From DeepSense Docs
Revision as of 19:39, 1 December 2020 by Bgeetika (talk | contribs) (Created page with " <div class="noautonum"> == 1. Logging on == DeepSense has two login nodes, login1.deepsense.ca and login2.deepsense.ca . You can access these through SSH with your username...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

1. Logging on

DeepSense has two login nodes, login1.deepsense.ca and login2.deepsense.ca . You can access these through SSH with your username and password from any computer on campus.

For example, if your userid is user1, you can connect to deepsense by typing ssh user1@login1.deepsense.ca just like logging on to any other network computer.

Note: The login nodes are intended for testing and compiling code. Please don’t run long or intensive computation on these nodes. Keep reading for instructions on how to submit compute jobs to dedicated compute nodes.

1.1 VPN

To connect to the DeepSense platform from outside of the Dalhousie Campus, you'll need to use a VPN. If you are are student, staff or faculty, you can use the Dalhousie VPN (https://wireless.dal.ca/vpnsoftware.php).

If you are not a Dalhousie staff, student, or faculty but require offsite access and cannot use the Dalhousie VPN then contact your project leader or (support@deepsense.ca) to make different arrangements.

For more info, see VPN Setup.


2. Configure your environment

DeepSense compute and management nodes are IBM Power8 computers (ppc64le) running Redhat Enterprise Linux. See Resources for more details on the available nodes.

2.1 Loading a python environment

You have two options for using python on DeepSense. You can use the systemwide python install, managed by DeepSense administrators. This is recommended for users new to Linux. You will need to contact DeepSense support to have additional software packages installed in the systemwide python.

Alternatively, you can install an Anaconda python environment or other software in your home directory. This allows you to install or update packages or software without requesting and waiting for DeepSense staff.

Systemwide python (managed by DeepSense)

DeepSense has two Anaconda python environments are installed locally on each DeepSense compute node.

First one is anaconda2 installed in /opt/anaconda2 will provide you python 2.7.5. To use this systemwide python add a parameter to your .bashrc file in your home directory:

echo ". /opt/anaconda2/etc/profile.d/conda.sh" >> ~/.bashrc

Second is anaconda3 installed in /software/WMLA/anaconda3 will provide you python 3.7.4. To use this systemwide python add a parameter to your .bashrc file in your home directory:

echo ". /software/WMLA/anaconda3/etc/profile.d/conda.sh" >> ~/.bashrc

Then source your .bashrc file: source ~/.bashrc

To load the python environment run conda activate


You can add either line to your .bashrc file to automatically load the desired environment when you log in.

Local python install (managed by individual user)

See Installing local software for more information.


4. Deep Learning packages and other available software

DeepSense has a variety of Deep Learning packages available as part of IBM Watson Machine Learning Accelerator including Tensorflow, Caffe, and PyTorch. These packages can be installed from the anaconda repository https://public.dhe.ibm.com/ibmdl/export/pub/software/server/ibm-ai/conda/

These packages were formerly installed in /opt/DL/ on each compute node and used to need to be activated before using them, e.g. source /opt/DL/tensorflow/bin/tensorflow-activate.

Deep Learning packages are typically used on the GPU nodes but some deep learning packages can also be used on the login nodes and CPU-only nodes. This can be useful for testing your code or running CPU-bound workloads. Note that some deep learning packages may fail if run without a GPU, e.g. Caffe currently requires a GPU.

For a brief tutorial including running Caffe and Tensorflow in a Jupyter notebook see Getting started with Deep Learning.

See Available software for the current list of installed software. If you require additional software you are welcome to install it locally in your home directory or contact DeepSense support.

5. Technical and research support

DeepSense has a dedicated support team of research scientists ready to help you with technical questions, installing software, or even research questions.

If you can't find the answer to your question on this wiki or need more extensive help then send an email to support@deepsense.ca .

See Technical support for more information about the support available.